

des Deutschen Bundestages

EARTH OBSERVATION DATA FOR OPTIMIZED PRECISION FARMING

25.01.2023

Daniel Spengler¹, Falk Boettcher², Erik Borg³, Eike Stefan Dobers⁴, Heike Gerighausen⁵ Ursula Geßner², Friederike Klan², Mike Teucher⁶, Michael Thiel⁷, Sina Truckenbrodt⁸ und Christopher Conrad⁶ and many more

- 1: Deutsches GeoForschungsZentrum Potsdam GFZ, Deutschland;
- 2: Deutscher Wetterdienst (DWD);
- 3: Deutsches Zentrum für Luft- und Raumfahrt e.V.;
- 4: Hochschule Neubrandenburg;
- 5: Julius Kühn Institut Braunschweig,
- 6: Martin-Luther-Universität Halle-Wittenberg;
- 7: Julius-Maximilians-Universität Institut für Geographie und Geologie;
- 8: Friedrich-Schiller-Universität Jena

BMEL TRIAL FIELDS FOR IMPROVING DIGITIZATION IN AGRICULTURE

Explore digital techniques for crop production and animal husbandry and test their practicality

Knowledge transfer in practice: e.g. information material, training

14 trial fields

- 8 crop production
- 3 in livestock farming
- 3 cross-sectoral

DIGITAL TRIAL SITE AGRISENS DEMMIN 4.0

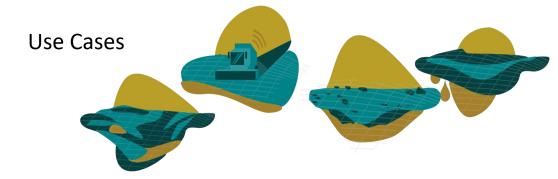
AgriSens DEMMIN 4.0

Remote sensing in crop production

Objectives

- Showing possibilities, but also limits
- Joint work on ...
 - ... identifying specific applications for remote sensing data
 - ... defining criteria for reliability and accuracy of remote sensing information
- Promoting the use of geoinformation in crop production

AGRISENS DEMMIN 4.0



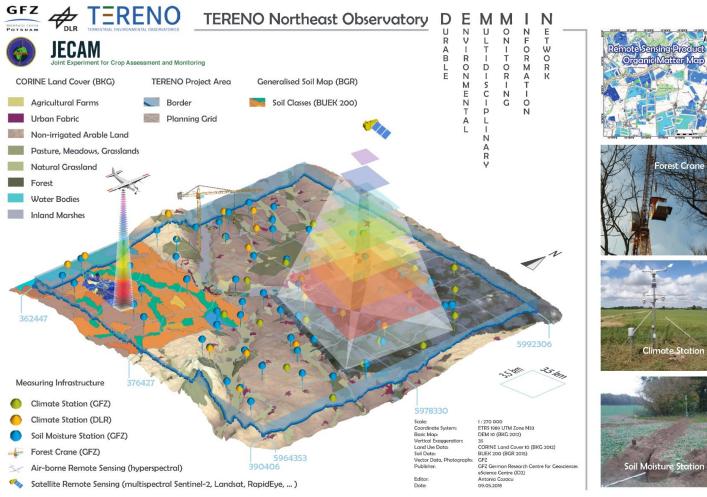
Status of digitisation

Information about plants and soil

Geo-data handling

Knownledge and technology transfer

GFZ Helmholtz-Zentrum



contact: agrisens.info@gfz-potsdam.de

M. Thiele, GFZ Potsdam

Projektträger

TEST SITE DEMMIN

JEGAN

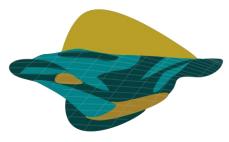
Joint Experiment for Crop Assessment and Monitoring

aufgrund eines Beschlusse

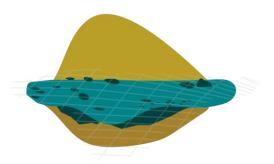
Gefördert durch

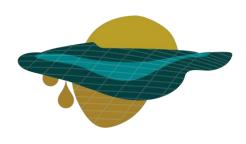
AgriSens

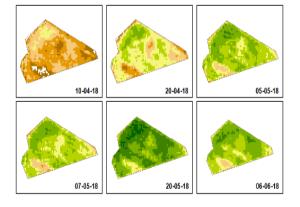
A. Cozacu, GFZ Potsdam



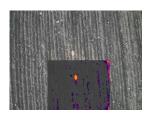
USE CASES




Crop monitoring and yield estimation

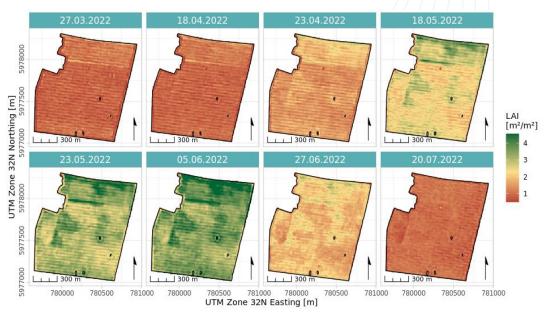

Sustainable farming

Detection of stones

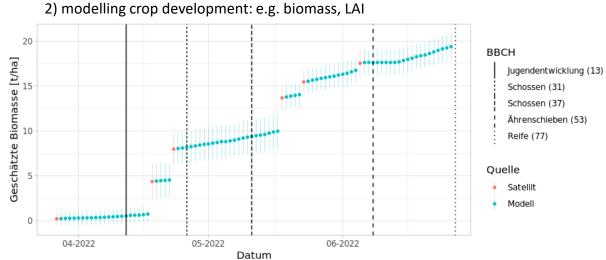


Irrigation

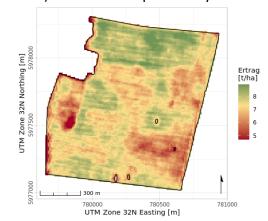
USE CASE: CROP MONITORING & YIELD ESTIMATION



Objectives:


Sentinel-2 based monitoring of crop development over the year

- Assessment of leaf area index and biomass
- Modelling crop development
- Yield estimation


1) LAI estimation of winter wheat using Sentinel-2

P. Borrmann, JKI

3) estimation of potential yield

Information services for farmers

P. Borrmann, JKI

aufgrund eines Beschlusse

P. Borrmann, JKI

USE CASE: SUSTAINABLE FARM MANAGEMENT AgriSens

EFFICIENT MANAGEMENT BY TAKING INTO ACCOUNT AREAS OF LOW YIELD (ALY)

Objectives

Prototype for a mobile App FieldMApp

Recording the characteristics of LYAs by farmers during management

S. Truckenbrodt, Universität Jena

Method Development and user test

... with farmers under real conditions

Feedback

• Farmers experiences, further options for uses

Future perspective

- Linking remote sensing data with FieldMApp data for methods calibration and validation
- Support of interpretation of anomalies in remote sensing data
- Scaling from local to regional analysis

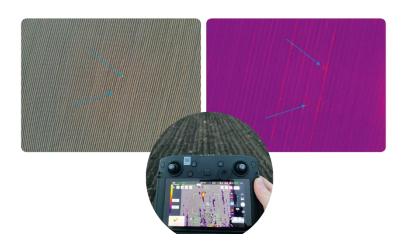
input information e.g. for crop monitoring services

ESA/ATG medialab.

contact: agrisens.info@gfz-potsdam.de

GFZ

USE CASE: STONE DETECTION



- Development of a workflow for drone-based detection of stones (>10cm)
- Drone-based maps as support for farmers

Service prototype

- Based on thermal imagery → lead to best results!
- Prototype OGC-conform service will be implemented and tested on the terminal of the agricultural machinery of a regional practice partner (AEVZ Merbitz, Deppe & Stücker)

Methods

- Test of different sensors (optical, thermal, LiDAR)
- Test of different recording scenarios
- Development of best practice applications

USE CASE: IRRIGATION

Objectives

- Optimisation of site-specific irrigation by means of coupled analysis of soil water balance models and remote sensing
- Analysing potentials for saving water
- Analysing economic effects

Methods

- Combining evapotranspiration and soil moisture-based approaches to estimate plant water requirements.
- Use of spatial patterns of plant population, soil type and weather conditions
- Incorporating the efficiency of irrigation systems to derive actual irrigation needs

Field Trials 2020/2021

- potato variety "Henriette,
- Fields equipped with sensors
- Different irrigation strategies

Results

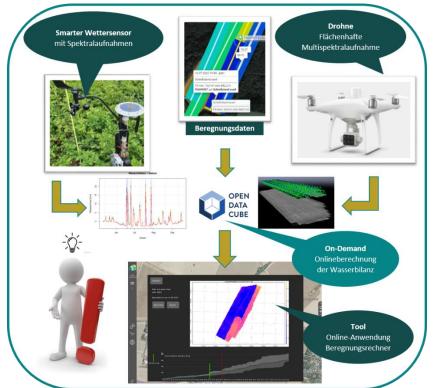
- 10-15% saving of irrigation water is possible at the same yield stability and quality
- Identification of subplots whose yields could have been optimised by higher irrigation

Modelled water balance High water balance

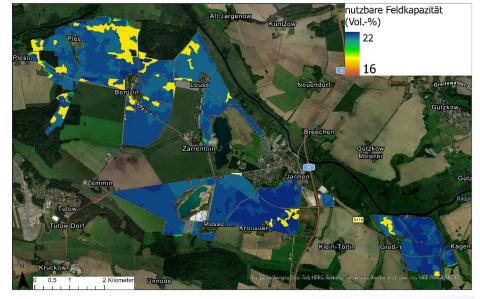
→ lower irrigation need

Low water balance

→ Higher irrigation need


USE CASE: IRRIGATION

Service prototype


- Based on thermal imagery
- Prototype OGC-conform service will be implemented and tested on the terminal of the agricultural machinery of a regional practice partner (AEVZ Merbitz, Deppe & Stücker)

Regional scaling

App development

aufgrund eines Beschlusse

TRANSFER TO AGRICULTURAL PRACTICES

Development of trainings

- => Module 1: Introducing QGIS to farmers
- => Module 2: Use of remote sensing data in QGIS
- => further, practical relevant modules planned

- Online an offline training for modules 1 & 2 for farmers
- => courses in Nov/Dez 2021, Jan/Feb 2022 + Jan 2023
- => Online and Present formats
- => Feedback is supporting further optimization / new module focus

Gefördert durch

REGIONAL CONFERENCE UND PRACTICE DAY – DEMMIN (MECKLENBURG VORPOMMERN)

"Fernerkundung ganz nah!"

- 15.02.2023 Regional Conference
 - Scientific presentations and workshops with focussed topics of AgriSens DEMMIN 4.0
- 16.02.2023 Practice Day
 - Demonstration of applications / services
 - Panel Discussion
- Registration:

www.agrisens-demmin.de

https://events.dlg.org/booking-event?id=1134

www.instagram.com/agrisens_demmin/

EXPERIENCES AND IDENTIFIED CHALLENGES

- Farmers are interested and open for field trials and new digital techniques
- See high potentials and needs for area wide information → so far rarely integrated into the real agricultural practice
- High barrier to integrate new digital techniques into practice
- Especially for geodata / remote sensing data
 - > potentially intermediate actors are needed, like agricultural advice services, machinery companies
- Economic benefits needs to be analysed better
 - → should be presented best on local specific use cases

Thank you very much!

Get in contact with AgriSens

agrisens.info@gfz-potsdam.de

www.agrisens-demmin.de

www.instagram.com/agrisens_demmin/

