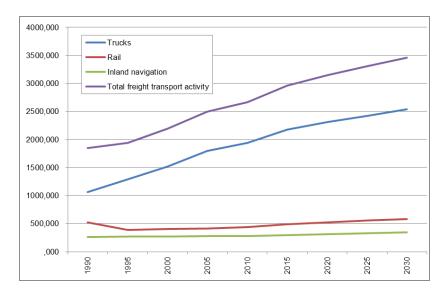


SSMART: improving safety for dangerous goods transport

Harwell, April 19th, 2012

- Needs
- Background & actors
- Project overview: requirements, design, market
- Feasibility assessment: drivers, trade-off, limitations
- Roadmap



Context

- Freight transport increases in Europe
- Dangerous goods share is around 8%
- Low probability but high severity

Needs

- For industrials: to monitor the payload of a Dangerous Good Transport (DGT)
- For Publics Bodies (PB): to get timely and correct information about DGT crossing the area of competence
- For Both: to share a common tool for safety enhancement

Trend

New French regulation 18/08/2010 – Article 17 - Protection and control of nuclear materials during transport

Real-time monitoring

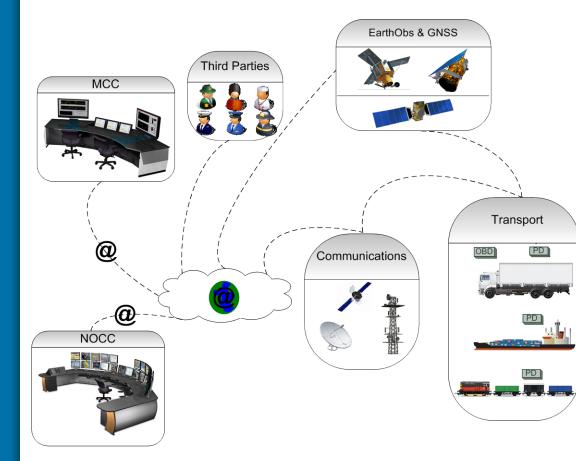
Automatic queries by Public Bodies

• 2009-2010

- Maturation of the needs by entities such as AREVA, APS, the Belgium Public Bodies, Infrabel and Ziegler
- Creation of a consortium involving:
 - An end-user community represented by AREVA and APS
 - An industrial community composed by Vitrociset Belgium, VITO and Création
- Start of a feasibility study under ESA IAP framework

• 2011

Completion of the feasibility study project (400K€): requirements & specifications, design concept, viability analysis, guidelines for a demonstration project


• Transport

- Worldwide payload monitoring (geo-localisation, sensors data, CANBUS data)
- Intermodality (railway, road, sea) & interoperability (area of competence)
- Continuity in data communication between transport, Control Centre, PB
- Secured transmission and treatment of data

• Operations

- Workflow management at preparation, monitoring and emergency stages
- Schedule, resources, navigation management
- Service database (ADR tunnel, weather forecast, dispersion model...)
- Business: running cost equivalent to current systems

NOCC: gather, process and monitor all services

MCC: allow users to remotely access services

PD: gather sensors telemetry, estimate positioning information, primary processor

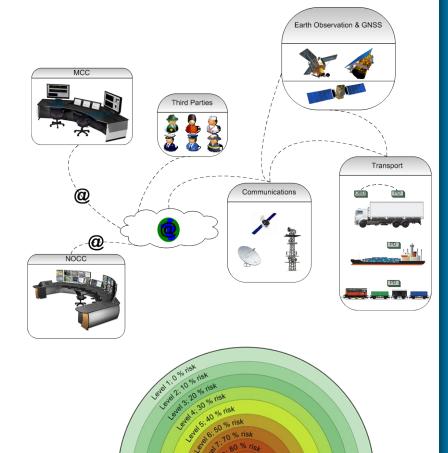
OBD: offer a set of services for road transport

Space segment: satellite communication & navigation, added-value services

Terrestrialsegment:GSM/GPRSservices, internet link

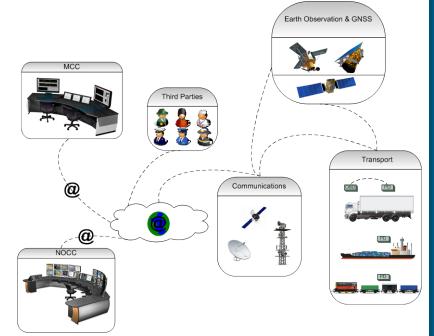
Segment 1: Nuclear fuel cycle; Hazardous transports by railway

Segment 2: Nuclear non-fuel cycle; Hazardous transport by road


Sub-segment	Customer characteristics	Customer needs
Segment 1	Few market players (<200) Big and international/European companies Railway Suffer a strong competition with road DGT prepared and followed Major DGT highly visible Use of dedicated transport equipment	Prevention Safety enhancement Overview of DGT (Public bodies) Public relation concerns
Segment 2	Large amount of companies Small and local Strong competition Sector very sensitive to global economic sustainability DGT is a transport among other Random breaking events during the transport	Competition added-value Logistics enhancement Overview of DGT (Public bodies)

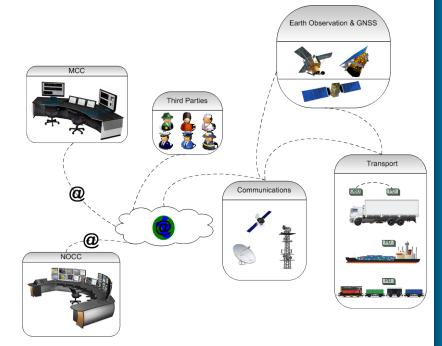
Assisted Remotely Transports

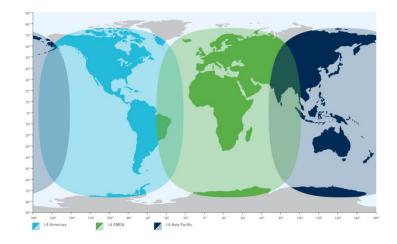
• Technical drivers


- Capabilities
- Level of maturity (Advancement Degree of Difficulty; credit to University of Strathclyde)
- Obsolescence risk
- Implementation process
- Market drivers
 - Prevention and safety enhancement
 - Secured data
 - Running cost equivalent to current systems

Unknown Unknowns Known Unknow Well Understood

- Communication architecture at transport level
 - 4 possible architectures
 - Rational: capabilities (amount of data exchanged, short wireless network performance), implementation process
- Satellite communication
 - 2 possible satellite providers
 - Rational: capabilities (amount of data exchanged, latency), running cost, provider & currency dependency
 - Main driver for the PD technology selection




- OBD technology selection
 - 3 possible solutions
 - Rational: capabilities (batteries, processor), running cost

Technical limitations

- Permanent tracking for maritime transport only if the satellite modem is in the line of sight
- No coverage in extreme high latitude locations
- Economical limitations
 - Near real-time payload status:
 - For critical data: 1 minute
 - For non critical data: 5 to 10 minutes
 - No monitoring capabilities if a tracked maritime payload falls overboard (beacon system considered too expensive)

70% of non-compliances are related to "nice to have" requirements

Way forward

Demonstration stage to be started mid-2012 (2.1M€; 4 prototypes)

New company to be created to run the service

Challenges

Demonstrate interoperability & intermodality

NOCC software development

PD & OBD implementation process

Partnerships with key providers

Thanks for your attention

Question/Answer

Contact details

Project management: Vincent Cocqueel (v.cocqueel@vitrocisetbelgium.com)

Technical matters: Fernando Nunez (f.nunez@vitrociset.be)

Business development: Alessandro Schisano (alessandro.schisano@vitrociset.it)

Visit us at: www.vitrocisetbelgium.com