

talkingfields

Heike Bach Silke Migdall Katharina Spannraft

Wolfgang Angermair Stefan Burgstaller AGRAR GMBH Georg Tüller

Tobias Hank

Tony Sephton

Precision Farming using Satellite Techniques

GPS satellites support site- specific **seeding**, **fertilization**, **plant protection** and **yield mapping** through global **navigation** services.

Satellite images monitor crop status and help farmers to manage their fields best for economic and ecologic benefits.

Smart Farming for sustainable & cost-efficient food production!

Concept of talkingfields in the frame of IAP

Important: Easy workflow for farmer in his Farm Management Information System!

Comparison to other EO services for PF

Present EO based precision farming services:

One-way-street, maximum interaction with farmer: field boundary upload, end point is a map

No standard EO service provides the service chain to the farm machinery.

talkingfields services:

Loop, direct interaction with farmer via Farm Management Information System:

- input from FMIS farmer data bank to EO analysis
- EO derived information to FMIS
- FMIS input to machinery
- · Application on field with machinery
- Feedback about application back to FMIS for documentation

Overview of application possibilities of satellite techniques for precision farming

- Basal dressing according to soil zones
- Seeding according to yield potential
- Information for planning of site-specific measures according to currently observed canopy development
 - Plant protection measures according to biomass or canopy density
 - N-Fertilization according to leaf area and N-uptake

talkingfields

Improved soil mapping requires quantification of persistent patterns

important: similar phenology of the different crops

talkingfields- IAP workshop

TF Base Map Results: Münchhoff-Klamroth

Comparison with on-site soil information

TF-Persistent relative fertility

тар

Persistent relative fertility in %

150 m

Farm soil map

3

- Yield level of the soil
 - (derived of the Klassenzeichen)
 - 1 = high yield level
 - 4 = low yield level

Improved Soil Mapping / Site characterisation

Concept:

- Optimization of soil sampling strategy for an improved soil mapping
- Use of satellite information for selective instead of raster sampling
- Specific zones for soil sampling are created according to TF Base Map
- Reduction of necessary amount of lab analyses sometimes possible

Harwell 20.04.2012

10

Soil sampling using satellite navigation

Overview of application possibilities of satellite techniques for precision farming

- Inventory via site characterisation and classification into zones.
 The farmer can manage zones with different characteristics differently.
 - Basal dressing according to soil zones
 - Seeding according to yield potential
- Information for planning of site-specific measures according to currently observed canopy development
 - Plant protection measures according to biomass or canopy density
 - N-Fertilization according to leaf area and N-uptake

talkingfields •

From biomass to yield

talkingfields- IAP workshop

Technical Validation – TF Yield Map

Summary of TF Services and Products

Service	Products	Product description
Improved Soil Mapping	TF Base Map	Persistent relative fertility [%]
	TF Zone Map	Zones as input for GPS-based selective soil
		sampling
Economic Evaluation	TF Economic Evaluation	Software tool for calculation of economic profiles
	Tool plus field statistics	of different precision farming strategies based on
		the histogram of the persistent relative fertility [%]
Plant Protection Measures	TF Biomass Map	Above-ground dry biomass as risk estimation for
		plant protection [t/ha]
Yield Estimation	TF Yield Map	Yield map as hindcast and nowcast [t/ha]
	TF Yield Forecast	Yield estimation as forecast up to 4 weeks in
		advance [t/ha]

What have we achieved so far?

Targets talkingfields at Kick-Off

- Build 4 integrative services for farmers
- Raise awareness for satellite technologies with farmers
- Have 30 000 ha service area for Improved Soil Mapping in first year after Demo Phase

Achievements talkingfields so far

- 2 of 4 integrative services pre-operational, 2 services starting near-real-time demo phase
- Two stakeholder workshops conducted with positive feedback (including service purchase)
- 27 000 ha service area for TF Base Map already processed
- Near-real-time services rely heavily on Sentinel-2 data in operational phase → delay in launch affects market opportunities after end of demo phase

 \rightarrow A lot of work remains to be done, but the achievements of the first 2/3 of the project are promising!

Current Status of Processing

talkingfields- IAP workshop

Demo User Mr. von Breitenbuch's idea about "perfect data"

The Talking Fields solution

For further information please contact:

Silke Migdall VISTA GmbH Gabelsbergerstr. 51 80333 München 0049 89 28 77 95 23 migdall@vista-geo.de

Thank you for your attention!

A project co-operation between

VISTA Remote Sensing in Geosciences GmbH

University of Munich, LMU

PC-Agrar GmbH, Pfarrkirchen

Supported by ESA in the IAP program under contract 4000100879/10/NL/US