

ESA-EDA: Paving the Way for New UAS Capabilities in Europe

Dr. Stefan Gustafsson, ESA Jens Fehler, EDA Noordwijk, 11th – 12th May 2010

Integrated Application Promotion

→ Developing new services for new user communities

New Capabilities for UAS

UAS + Satellites = New capabilities

- Long range/endurance
- Fly low, fly high ...
- Flexible payload
 - Enabler for insertion of UAS into General Air Space
 - Downlink high bandwidth payload data to the user in near real-time

- Flexible usage
 - Anywhere, anytime ...
 - (Almost) any payload
- Information available when you need it → quick reaction
 - Adapting UAS mission
 - Alerting ground units
 - Potential economical benefits
 - Flexible deployment
 - Higher utilisation
 - Development of specialised platforms

UAS supported by Integrated Space **Systems**

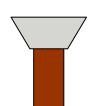
Satellite Relay

Payload Communication

VHF Aeronautical Communication

End user of UAV payload data

E.g. Coast Guard or Owner of infrastructure

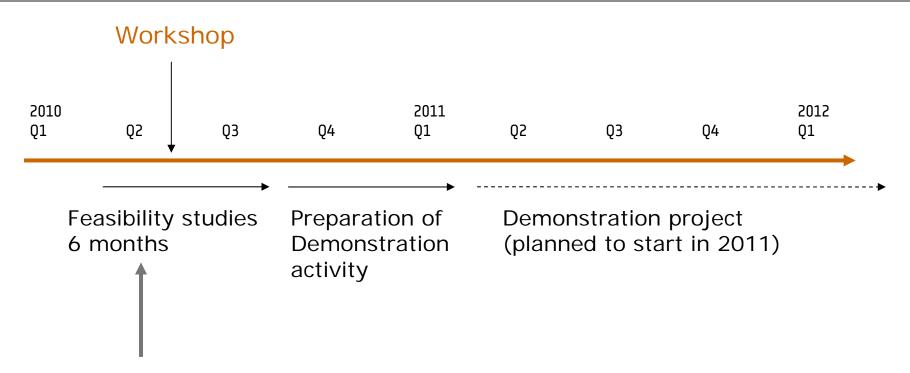

Space provides a solution for:

- Real-time, secure, and reliable communication links with global coverage
- Very precise navigation without ground equipment
- Facilitates the sharing of airspace with other aircraft
 - UAS's can be deployed "anywhere"
 - Maximizes use of the UAS payload

The UAV carries a payload, e.g. camera, radar, or other electronic sensors

Air Traffic Management - Should be able to handle the **UAS** as "any aircraft"

UAV Ground


Control

Station

Timelines

Two feasibility studies started in March 2010

- ESA contract with Indra Espacio, Spain
- EDA contract with EADS Astrium, France

Close coordination between ESA and EDA

Feasibility Studies Objectives

- Determine feasibility of a satellite service and plan a
 UAS mission to demonstrate
 - Integration into non-segregated airspace using satellite communication to relay C2, S&A, and ATC
 - Added value of satellites for payload data communication
- Investigate the viability and non-technical issues
- Provide a roadmap
- First step:
 - Identify user and stakeholder needs

Agenda – Afternoon 11th May

- 14:00 New perspectives for users
- 14:20 Recapitulation of user needs
- 14:40 Presentation

Feasibility Study SINUE by Indra Espacio

- 15:05 Coffee break
- 15:25 Presentation

Feasibility Study IDEAS by EADS Astrium

15:50 Presentations

Recommendations for mission selection

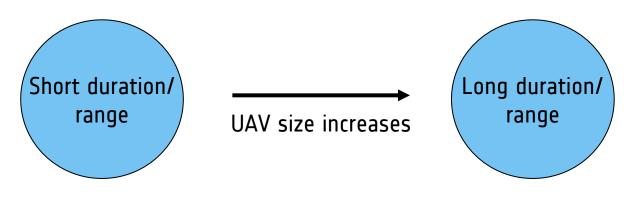
16:10 Panel discussion

17:00 Cocktail in ESTEC

European Defence Agency

European Space Agency

Recapitulation of user needs



- Information (specific to each user)
 - On time, any time
 - Need for high flexibility in obtaining information
 - Possibly, near real-time data is needed
 - At specific places
 - From specific spots to large areas
- Information provided by various sensors
 - Visual, IR
 - Radar, LiDAR
- Type of information may vary during a mission
 - For example: first spotting something irregular, then investigating in detail
- On board processing requirements depends on information needs and data rate available for payload link

Two types of missions

- Typically low altitude
- UAV launched locally
- BLOS capability depends on scenario

 Agricultural and forestry monitoring, emergency services

- Low to high altitudes
- UAV may be launched from distant location
- BLOS capability is crucial
- Integration into General Air Space critical
- Mineral exploration,
 pipeline inspection, border
 and water surveillance

Other issues

- UAS are already used for a large variety of purposes, but for the business to take off on a large scale a number of issues need to be tackled
 - Legal issues for using UAS operationally
 - Reliability and safety must be proven
 - Need for open standards

Affordability

Specifically for commercial applications