Pico- and Nanosatellites at EPFL Lessons learnt

Muriel Richard eSpace muriel.richard@epfl.ch

LIFT to Space Conference 2015 Geneva, Switzerland February 4th 2015

eSpace SPACE ENGINEERING CENTER

PicoSats: SwissCube

- Objectives: Educational project
 - ~ 200 students involved over 5 institutions (HES-SO, Uni Neuchatel, NWFH, Uni-Bern, EPFL)
 - 3-yr development
 - Launched in Sept. 2009, still operational after 5 years in space (LEO 700 km)
- Size, mass: 1U CubeSat, 820 g
- Labour context: project represents ~135'000 hours of work (supervising + student labour)

eSpace

- Architecture:
 - Simple functionalities
 - Functional (degraded) redundancy
 - Distributed processing

PicoSats: CubETH

- Objectives: Educational, technology demonstration & science
 - 5 institutions involved (ETHZ, HES Luzern, HES Rapperswil, HES-SO, EPFL)
 - Test of a GNSS receiver tracking GPS, Glonass, Galileo and Compas
 - Precise Orbit Determination based on Single Frequency GNSS, Attitude determination
 - Experimental measurements: radio occulattions, reflectometry, air density estimation
- Size, mass: 1U CubeSat, ~1kg
- Labour context: Student labour + supervisors
- Architecture: Payload is multiple redundant

Lessons learnt from these PicoSat developments

- "New Age" of education:
 - Learning by doing
 - Condensed System Engineering and flight experience (Phase A-E in 2-3 years)
 - Very dynamic environment for master students and young engineers
 - Asks for taking responsibilities early on (what students creates, flies...)
- New mindset in satellite design:
 - nanosats are a very open and free environment to test new technologies and implementations
 - rapid insertion of high tech from other domains into the satellite designs
- Flight system:
 - Small and focused functionalities (or measurement objective)...
 - Redundancy handled differently ... good testing...
 - Simple on-board autonomy ... all of this brings robustness...
- New applications: constellations (QB50)...

Next? CADRE NanoSats mission

- CADRE: CubeSat Active Debris Removal Experiment, ESA GSTP activity
- Objectives: Technology demonstration
 - Test of ADR critical technologies
 - De-risking of large ADR mission
- Size, mass: Chaser 8U, 16 kg Target 4U, 4 kg

eSpace

- Labor context: Semi-professional environment (engineers + PhDs)
- Architecture:
 - Complex functionalities
 - Functional redundancy
 - High power processing

CADRE conceptual design (6 DoF NanoSat)

CubETH back-up

CubETH Preliminary requirements review | 04.04.2013

eSpace

SwissCube Flight System

SwissCube Electronic system

- 7 subsystems
 - Spread over 16 boards
- In total...
 - 357 wires...
 - More than 1000 components
 - Soldered by hand by the team
- Other considerations
 - EMC problems, I2C bus
 - Thermal dissipation of PA
 - Integration difficulties
 - Solutions : creative ideas, and solutions seaked early in the design

eSpace

