Space Weather Awareness in the Arctic

Torsten Neubert

Head of Section for Solar System Physics

DTU Space National Space Institute

Technology in the Arctic

- There is significant potential
 - Resources
 - Tourism
 - ... helped by receding ocean ice
- There are severe challenges
 - Weather
 - Ice
 - Poor naval maps
 - Remoteness of the region
 - and
 - ... Space Weather...

Space Weather is Powered by the SUN

- The SUN emits electromagnetic radiation
 - The energetic radiation in the UV and X-ray bands varies in time
 - The radiation takes 8 min to reach Earth
- The SUN ejects matter
 - Electrons and protons that form the Solar Wind
 - Eruptions take ~30 min to a tens of hours to reach Earth
- Solar activity varies on timescales from minutes to many years

The SUN: X-ray activity 11-year cycle

The Yohkoh satellite

The SUN: Impulsive injection of particles

The Trace Satellite

The SUN from ESAs Soho satellite

Disturbances travel to Earth

The Solar wind Reaches Earth

- The electromagnetic radiation is unaffected by the Earths magnetic field. It affects primarily the lower latitude regions
- The particles of the solar wind interacts with the magnetosphere. The effects are strong in the Arctic.

Effects in the Arctic – Ionosphere Density

- Impulsive energetic particles are dumped into the upper atmosphere creating enhanced ionisation and perturbations to the ionosphere
 - Disrupts HF communication
 - Affects GNSS accuracies

Effects in the Arctic – Electric Currents

- Impulsive currents are induced in the lower ionosphere (tens of kA)
 - currents are induce in the Earth's crust
 - .. and power grids
 - the magnetic field direction varies widely

The Space Weather Concerns

- The "normal" occurrence of Space Weather storms
 - Some aspects can be mitigated by proper design of technological systems
 - Other aspects needs warning:
 - Navigation
 - Communication
 - The challenge is to give high quality information on Space Weather conditions
- The Super Storm (Carrington)
 - August 28 to September 2, 1859 numerous sunspots and solar flares
 - September 1–2 the largest recorded geomagnetic storm with Aurorae around the world, even the Caribbean
 - Telegraph systems all over Europe and North America failed
 - This magnitude expected every 500 years, with events one-fifth as large, several times per century (1921 and 1960)

The Role of ESA for Arctic Space Weather

- Space infrastructure should ideally support:
 - Acquisition of data for development of needed models and predictive tools
 - Monitoring of Space Weather relevant parameters
- The infrastructure could include
 - Observations (monitoring) of solar activity
 - Monitoring of the solar wind parameters (L1)
 - Low Earth Orbit satellites for monitoring of energetic particles and magnetic fields (ionospheric currents)

The Role of DTU Space

- DTU Space activities are coordinated in our Space Weather Center
 - We deploy and operate instruments in Denmark and Greenland
 - collect and calibrate measurements
 - develop models and data products
 - communicate with users, the research community, and the public
- The center builds on DTU Space expertise
 - Scientific
 - Solar wind and its interactions with the Earth's magnetic field
 - The interactions of the magnetosphere processes with the ionosphere
 - The Earth's geomagnetic field
 - Instrumentation
 - Magnetic field sensors on ground and in space
 - GPS technology and its use for ionospheric monitoring

High-precision magnetometry missions with DTU Space instruments

Satellites are in low Earth, polar orbit providing accurate measurements of Space Weather magnetic perturbations (electric currents)

Ground observations

- □ Magnetic observatory
- Variometer station
- Variometer station (MAGIC)
- GPS (ionosphere)
- Magnetometers (magnetic field fluctuations)