Space Weather Awareness in the Arctic

Torsten Neubert
Head of Section for Solar System Physics
Technology in the Arctic

- There is significant potential
 - Resources
 - Tourism
 - ... helped by receding ocean ice

- There are severe challenges
 - Weather
 - Ice
 - Poor naval maps
 - Remoteness of the region
 - and
 - ... Space Weather...
Space Weather is Powered by the SUN

- The SUN emits electromagnetic radiation
 - The energetic radiation in the UV and X-ray bands varies in time
 - The radiation takes 8 min to reach Earth

- The SUN ejects matter
 - Electrons and protons that form the Solar Wind
 - Eruptions take ~30 min to a tens of hours to reach Earth

- Solar activity varies on timescales from minutes to many years
The SUN: X-ray activity 11-year cycle

The Yohkoh satellite
The SUN: Impulsive injection of particles

The Trace Satellite
The SUN from ESAs Soho satellite
Disturbances travel to Earth

2011–12–25T00:00

2011–12–25T00 +0.00 day

Earth Mars Mercury Venus
Juno Kepler Messenger Spitzer

Disturbances travel to Earth
The Solar wind Reaches Earth

- The electromagnetic radiation is unaffected by the Earth's magnetic field. It affects primarily the lower latitude regions.

- The particles of the solar wind interacts with the magnetosphere. The effects are strong in the Arctic.
Effects in the Arctic – Ionosphere Density

- Impulsive energetic particles are dumped into the upper atmosphere creating enhanced ionisation and perturbations to the ionosphere
 - Disrupts HF communication
 - Affects GNSS accuracies
Effects in the Arctic – Electric Currents

- Impulsive currents are induced in the lower ionosphere (tens of kA)
 - currents are induce in the Earth’s crust
 - .. and power grids
 - the magnetic field direction varies widely
The Space Weather Concerns

• The “normal” occurrence of Space Weather storms
 – Some aspects can be mitigated by proper design of technological systems
 – Other aspects needs warning:
 • Navigation
 • Communication
 – The challenge is to give high quality information on Space Weather conditions

• The Super Storm (Carrington)
 – August 28 to September 2, 1859 numerous sunspots and solar flares
 – September 1–2 the largest recorded geomagnetic storm with Aurorae around the world, even the Caribbean
 – Telegraph systems all over Europe and North America failed
 – This magnitude expected every 500 years, with events one-fifth as large, several times per century (1921 and 1960)
The Role of ESA for Arctic Space Weather

- Space infrastructure should ideally support:
 - Acquisition of data for development of needed models and predictive tools
 - Monitoring of Space Weather relevant parameters

- The infrastructure could include
 - Observations (monitoring) of solar activity
 - Monitoring of the solar wind parameters (L1)
 - Low Earth Orbit satellites for monitoring of energetic particles and magnetic fields (ionospheric currents)
The Role of DTU Space

• DTU Space activities are coordinated in our Space Weather Center
 – We deploy and operate instruments in Denmark and Greenland
 – collect and calibrate measurements
 – develop models and data products
 – communicate with users, the research community, and the public

• The center builds on DTU Space expertise
 – Scientific
 • Solar wind and its interactions with the Earth’s magnetic field
 • The interactions of the magnetosphere processes with the ionosphere
 • The Earth’s geomagnetic field
 – Instrumentation
 • Magnetic field sensors on ground and in space
 • GPS technology and its use for ionospheric monitoring
High-precision magnetometry missions with DTU Space instruments

Satellites are in low Earth, polar orbit providing accurate measurements of Space Weather magnetic perturbations (electric currents)
Ground observations

- GPS (ionosphere)
- Magnetometers (magnetic field fluctuations)