SAVEWATER - Integrated satellite-AUV services for sustainable water management

You are here

The Savewater Project conducts a feasibility study for integrated Satellite - AUV (autonomous underwater vehicle) applications in the field of water management. AUVs are unmanned vehicles which travel underwater without requiring direct control from an operator. The proposed application integrates satellite services (earth observation and navigation) and mobile platform services (in situ measurements and visualization of water characteristics).

This project will be carried out by VITO in cooperation with the Public Research Centre Gabriel Lippmann in Luxembourg.

The main objectives of the feasibility study for the proposed integrated application are:

  • Research on the technical feasibility
  • Research on the economic feasibility
  • Large user involvement in defining the system and services, establishing the proof-of concept, and in assessing the added value

This feasibility study provides two use cases, namely:

  • Algae blooms in reservoirs
  • Bathymetry mapping in (partially) shallow waters over large areas

One case will be selected for a proof of concept to demonstrate the integration of satellite services with mobile platform services depending on the user requirements, the available technologies and the system and service specifications of the integrated application. The proof of concept will be done using available earth observation and in-situ data. Based on the technical and economical feasibility and the possible interest of the end users, this project will provide a roadmap and a preparation for a follow-up demonstration project.

Users and their needs

  • Environmental agencies: environmental monitoring, swimming water quality
  • Coastal agencies: port access, bathymetry in shallow waters
  • Dredging sector: dredging environmental impact (turbidity, ...), bathymetry
  • Drinking water companies: monitoring drinking water production, water quality, calamities
  • Port authorities: port access, bathymetry
  • Scientific community: users of data
  • Consultancy: environmental services
  • NGO's: nature conservation
  • Chemical producers: discharges in surface water
  • Aquaculture sector: water quality and currents
  • In-situ water quality sensor producers/suppliers
  • AUV suppliers
  • ICT industry

Current participants:
Current Participants

For monitoring the water quality:

In-situ monitoring is a snapshot at one place and one time with the risk that there is algal bloom on another location in the same water body.
To increase the spatial coverage using earth observation, this will lead to more targeted in-situ monitoring (hot spots)
Early detection of algal bloom development or arrival of pollution clouds in the raw water resources will lead to a better water management.

For monitoring bathymetry and currents:

To guarantee secure maritime access to ports and fare lanes it is important to measure the hydrography of the rivers and seas over large areas (e.g. the complete Western Scheldt) at one and the same time (e.g. one day).
This should be feasible in both deep and shallow waters, and with a vertical and horizontal accuracy which is comparable with the existing sounding techniques.

Service/ system concept

The activity is to deliver new services or a new integrated system for an integrated spatial approach on water systems concerning water quality and quantity monitoring.

Space Added Value

The added value of the integration of in-situ monitoring with earth observation are:

  • Increase of spatial coverage and spatial resolution
  • Consistent observations over time
  • Provides data for a large area within a short time span
  • An integrated approach on water systems providing also information about the surrounding environments and boundary conditions
  • Shorter response / intervention time in case of calamities
  • Complementarities between remote sensing and in-situ data collection through course control (hot spots)

Product Features

The general architecture of the SAVEWATER integrated system and associated services for water monitoring and water management is displayed in next figure.

Savewater Service Architecture

The design architecture of the integrated system depends on the application and will be determined in the feasibility study. The basic components in the architecture will be:

For in-situ measurements:

  • Water quality or quantity sensors
  • AUV
  • Sensors for navigation (DVL, inertial navigation system or underwater acoustic positioning system)
  • Communication (radio interface, cellular modem, satellite modem or acoustic modem)

Earth Observation:

  • Satellite sensors (MERIS, MODIS, ASTER, IKONOS, Worldview or Hyperion)
  • Algorithms for assessing surface water properties

Geospatial data infrastructure:

  • Client application
    Service layer (WMS, etc.)
  • Server layer (web server, map publishing server and database server and catalogue server)
  • Data source layer (the cartographic data (geodata) as well as time series data

Sensor Web Enablement

Key Issues

The key issue in this study is to demonstrate the integration of satellite services (earth observation and navigation) with mobile platform services (in situ measurements and visualization of water characteristics) and the related benefits for the different users.


Benefits:
The focus of the project is developing a new integrated monitoring system to offer more information about water quality/quantity over large areas in a short time.

The expected benefits of this new monitoring technique are:

  • Results will be available more quickly (e.g. calamities, etc.)
  • Monitoring of (partially) shallow waters
  • Improved spatial coverage
  • Overall cost savings

Current Status

The SAVEWAER project finished in June 2013. The following tasks were successfully conducted:

  • Stakeholder/user analysis
  • State-of-the-art analysis
  • System & service design
  • Proof-of-Concept
  • Viability study
  • Feasibility assessment and roadmap to demonstration
  • Conference/Workshop for the participants (February 2013)

The SAVEWATER IAP Feasibility Study assessed and proved successfully the concept of integrating satellite services with autonomous water vehicle services. Earth Observation is used in the system to obtain large area coverage and spatial trend detection, and Satellite Navigation is required for the operation of autonomous water vehicles and for direct geo-referencing of the in situ measurements.

Project Managers

Contractor Project Manager

Piet Seuntjens
Boeretang 200
2400 Mol
Belgium

ESA Project Manager

César Bastón Canosa
Keplerlaan 1
2201 AZ Noordwijk
Netherlands

Status Date

Updated: 07 August 2012 - Created: 15 February 2014