SnowSense DP - Integrated Service for Runoff and Hydropower Assessment and Forecast related to Snow Cover Dynamics in Remote Areas

You are here

Large areas of the world – almost the entire land surface of the Northern Hemisphere are affected by snow cover; including strong dynamics e.g. snowfall & melting in short periods. The snow is the basis of hydropower production, and critical for flood events, and other aspects of daily residents life and economy.

Since the most relevant parameter, the water stored in the snow cover, known as the Snow Water Equivalent (SWE), is only measurable by costly automatic stations or manual field campaigns, the information for remote areas – not densely populated or equipped with traffic infrastructure - is mostly missing. On these areas in North America, Scandinavia and Eurasia, the snow cover nevertheless has a strong impact in economy and security. 

SnowSense will design, develop and demonstrate a pre-operational service for the area of the island of Newfoundland / Canada. By using a novel, GNSS based in-situ snow monitoring system, in combination of existing technologies (EO and water balance modelling), the gaps of knowledge of the SWE in remote or mountainous areas will be filled. The team will work out a cost efficient and autonomous operating system to provide the relevant information for the users.

Users and their needs

SnowSense is targeting operational hydrological users in areas where snow has significant impact on the run-off generation:

  • Commercial users, in charge for Renewable Energy Production by managing hydro power plants
  • Public users, in charge for public safety by early warning, e.g. providing flood forecasts and advices

Both user sectors share the needs for an improved knowledge on the current snow situation, the snow properties (e.g. status) and the volume of the stored water in the catchments. Especially in remote areas reliable information on snow and run-off is totally missing. Nevertheless they have to make decisions on the water management (e.g. dam regulations). Snow and run-off information, enhanced by model based run-off and hydropower calculations and forecast will help to:

  • Improve the efficiency of renewable energy production
  • Improve the reliability and quality of flood forecasts

Within the demonstration two Canadian users, located in Newfoundland, one in the domain of the commercial sector and one in the domain of the public sector, are involved. Both users participate by active support during the service design and the service and hardware installation.

Targeted users for this service are located in North America, Scandinavia and all countries (more than 40 in the world) with significant snow cover and dynamics, e.g. with mountainous areas or critical catchments.


One of the key elements for the provision of Snow Information and Run-off Forecasts is the use of a novel in-situ hardware component for snow properties measurements.

Based on GNSS signals, the snow properties (e.g. the amount of water stored in the snow cover (=snow water equivalent) and the status of the snow (liquid water content)) can be retrieved by an autonomous operating, easy installable, maintenance free and low cost design sensor.

Satcom capabilities of the sensor system support the distributed installation of the in-situ hardware in large and remote areas.

Enhanced by the existing technologies of EO snow monitoring (using e.g. Sentinel-1) and snow modeling (using a physically based land surface process model) a reliable, state of the art snow information system will be installed.

Based on the snow information run-off calculations and hydropower forecasts can be provided. 

Space Added Value

Within SnowSense three space components show their excellent potential for solving the specific users needs for snow monitoring:

While Earth Observation is an applied method to retrieve information from remote and large areas surfaces, the use of GNSS as source of information retrieval is novel technology.

Using the signals of existing GNSS satellites (e.g. GPS) the physical properties of the snow cover can be derived at the locations of the distributed in-situ stations.

Satcom, as growing component in M2M communications helps SnowSense to retrieve information from all distributed station locations.

Current Status

The Demo Project started in February 2015 and achieved its Final Review in November 2018.

After the BDR (September 2015) and the CDR (March 2016), the system and service were built up and tested within FAT (March 2017) and SAT (November 2017).

The assimilation of in-situ snow measurements and the information from EO monitoring, using Sentinel-1, with focus on the detection of snow melting processes, had been integrated to the hydrological model.

A first set of prototype in-situ stations has been installed in Newfoundland/Canada for snow parameter measurements during the winter 2015/2016. This was followed by a technological update for processing and integration of a satellite-based data transfer during the winter 2016/2017. The second version of in-situ stations, together with the full-service set-up for the demo service full system was brought to operation in winter 2017/2018

Within the demonstration period all relevant information for customer use and decision making had been provided online:

  • Snow Water Equivalent Maps
  • Satellite Observations
  • Snow Station Measurements
  • Run-off values
  • Amount of water stored as snow (hydropower potential)
  • Forecasts

SnowSense Stations and the SnowSense Service are now commercially available.  The SnowSense station technology is patent pending. SnowSense is registered trademark.

Project Managers

Contractor Project Manager

Florian Appel
VISTA Remote Sensing in Geosciences GmbH
Gabelsberger Str. 51
80333 Munich
+49 89 45 21 614 15

ESA Project Manager

Olivier Becu
Keplerlaan 1
2200 AG Noordwijk ZH

Status Date

Updated: 07 May 2019 - Created: 04 December 2015